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The problem of the temperature field of a semi-infinite cylinder with a heat source of constant power in the
form of a round contact spot acting on its end-face surface has been solved. A method of nondestructive con-
trol of the thermophysical properties of rocks on borehole cores is suggested.

Introduction. Recently, the methods of nondestructive control of the thermophysical properties of bulky ma-
terials have found widespread application in the practice of thermal measurements. Their theory is based on the laws
governing temperature perturbations in a semi-infinite space from a heat source in the form of a circle on its surface.

It is of interest to investigate the possibilities of using these methods for measuring the thermophysical prop-
erties of rock samples from borehole cores that are characterized by finite diameters. For this purpose, it is necessary
to solve the problem for a finite region having, in particular, the shape of a cylinder. Various variants of the problem
were considered in [1]. The two-dimensional temperature field of a finite cylinder with one of its end-faces heated by
a local heat source of circular shape or in the form of a ring with time-variable power and temperature, when on other
surfaces of the body the boundary condition of the third kind is given, has been studied. The latter is the generalized
case of heat transfer of a body with the environment, since many particular cases of heat transfer may follow from it.
The solutions of the problem obtained in [1] are of theoretical interest in the development of various variants of the
method of nondestructive control of the thermophysical properties of materials in conformity with the technical possi-
bilities of realization of theoretically adopted conditions of heat exchange of a body with its environment. Here, we
restrict ourselves to a particular problem in application to borehole cores of rocks (there are no limitations on the
length).

Statement of the Problem. We have a cylinder of infinite length of radius R. On the end-face surface of
the cylinder (z = 0) there is a heat source of constant power Q, of radius r0, 0 < r0 ≤ R. The end-face (z = 0) and
side (r = R) surfaces of the cylinder are insulated. The initial temperature of the cylinder is constant and equal to
the temperature of the environment ten. At a large distance along the length (z → ∞) the temperature of the cylinder
does not change in the period of heat source action. The problem is axisymmetric.

The problem is formulated mathematically as follows:
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at r = 0

∂t (0, z, τ)
∂r

 = 0   and   t (0, z, τ) ≠ ∞ . (5)

We introduce the notation ϑ(r, z, τ) = t(r, z, τ) − ten. Then, according to (2) ϑ = 0, the remaining conditions
for ϑ are the same as for t.

Solution of the Problem. We will seek the solution by successive application of the Hankel and Laplace
methods of integral transformations:
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where p is the root of the characteristic equation

J0
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In the notation of the Laplace–Hankel transformation θ
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Hs the system of equations (1)–(5) may be presented in
the form
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under the boundary conditions:
for z = 0 and any r
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for r = 0 and z → ∞
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for any r and z → ∞
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Here, we obtain the following solution of the problem in transforms:

θ
__

Hs (p, z, s) = 
qr0J1 (pr0)

λps√p2 + s ⁄ a
 exp − z√p2 + s ⁄ a  . (14)

Using the inversion theorem, we will successively go over from the transform (14) to the inverse transform,
first following the Hankel transformation:
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where pn are the roots of the characteristic equation (8). Having substituted the expression of θ
__

Hs from Eq. (14) into
Eq. (15), we obtain
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Using the tables of transforms with respect to s for Eq. (16), the solution of the problem will be written fi-
nally in the form
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where

Ψn (z, τ, µn) = exp 



− 

zµn
R




 erfc 





z

2√aτ
 − 
µn√aτ

R




 − exp 




 
zµn

R




 erfc 





z

2√aτ
 + 
µn√aτ

R



 ,   µn = pnR . (18)

We will investigate this solution in the limiting cases.
1. If z → ∞, then Ψn = 0 and t − ten = 0, i.e., at a large distance from the body surface there are no changes

in temperature.
2. If r0 = R, then the sum of the series is equal to zero, since J1(µn) = 0; we will obtain the solution of the

problem for a semi-infinite body heated from the surface by a power Q, i.e., at q = Q ⁄ s = const (here S = πR2 is the
area of the end-face surface of the cylinder) [2]
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3. If r0 = 0, then (r2 ⁄ R2) = 0 and J1(0) = 0. Then t − ten = 0, i.e., there is no heating of the body.
4. If R → ∞, then (r0

2 ⁄ R2) → 0, and the first term of Eq. (17) vanishes. In the second term the parameter
µn assumes quite different values. Since the region considered is not limited at all over the radius, no limitations are
imposed on the parameter µn and it assumes any values from 0 to ∞, and in the solution the sum is replaced by in-
finite integral over µ or p = µ ⁄ R:

t (r, z, τ) − ten = ∫ 
0

∞

c (p) J0 (pr) Ψ (z, τ, p) dp , (20)

which, in the case of boundary condition (4), assumes the form of Oosterkamp’s solution [2]:
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 , (21)

416



where c(p) is the integration parameter; Ψ(z, τ, p) is the same as in Eq. (18) but without the subscript n at p and Ψ.
This corresponds to the case of heating a semi-infinite space through a contact spot of radius r0 on its surface (z = 0).

Such a problem [3] can be met in calculations of the thermal resistance of contacting materials in the high-
temperature thermophysics in different fields of technology, but here we restrict ourselves to the consideration of only
stationary thermal state of bodies. However, from Eq. (17) it follows that such systems never attain a stationary ther-
mal state.

Method Development. The solution (17) obtained allows one to develop the method of nondestructive control
of the thermophysical properties of rocks on borehole cores. Here it is possible to use both the temperature of the heat
source center and its integral mean temperature. We will consider this in more detail.

The temperature of the heat source (z = 0) is
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In the second part of Eq. (22) the error function erf rapidly tends to a constant value with time and at Fo ≥ 0.16 it
becomes equal to 1 with an error of no more than 3%. Then at τ ≥ 0.16R2 ⁄ a the following relation is valid: for the
excess temperature of the heat source center (r = 0, z = 0)

ϑc = tc − ten = N√τ  + 
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 B , (23)

for the integral mean temperature of the heat source
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where N, B, and K are certain constants:
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Fig. 1. Excess temperatures ϑc (1) and ϑ
__

 (2) of the heating contact spot vs.
the parameter √τ . ϑ, oC; √τ , sec1 ⁄ 2.
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Whence it follows that with the experimental data being processed in the form of the plots of the functions ϑc = √τ
and ϑ

__
 = √τ  (Fig. 1), the latter in a certain interval of time τ1 ≥ 0.16R2 ⁄ a become linear, with the intersection of the

straight lines with the ordinate axis (√τ  = 0) giving the values of ϑc0 and ϑ
__

0 by which the thermal conductivity of
the investigated sample is calculated from the following formulas:
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The thermal diffusivity of the sample is determined from the inclination angle ϕ of the plots of ϑc → √τ  and
ϑ
__

 → √τ :
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The functions B and K have been tabulated depending on the parameter r0
 ⁄ R.

The physical model of the system investigated and the schematic diagram of the facility are shown in Fig. 2.
The basic elements of the facility are the heating element of circular shape 3 and a differential thermocouple 4 that
records the excess temperature of the contact zone of heating (of the heat source). From the practical point of view it
is convenient to assemble the heating element on a metal casing for effective averaging of temperature. One of the
end-face surfaces of the sample 1 was smoothly ground. The sample is well insulated on all sides 2. The experiment
is run at the needed thermostated constant temperature ten.

It should be noted that in the developed dynamic mode of linear dependence of the excess temperature of the
heat source on the parameter equal to the square root of time the distortions of the temperature field of the sample
because of the heat capacity of the heater are excluded, which is an advantage of the proposed method of measuring
the thermophysical properties of rocks on borehole cores. Moreover, the use of this method ensures, as compared to
other well-known methods, a more accurate determination of the thermophysical properties of rocks, since the factor of
finite dimensions of a sample undesirable for previous methods underlies the very theoretical foundation of the pro-

Fig. 2. The physical model of the system investigated and schematic diagram
of the facility: 1) a test sample from the borehole core; 2) thermal insulation;
3) heating element; 4) differential thermocouple.
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posed method reducing to a minimum the error caused by the deviation of actually recorded temperature field from
that adopted theoretically.

Conclusions. A method of nondestructive control of the thermophysical properties of rocks on borehole cores
has been developed. It differs from those known by a factor that takes into account the boundedness of the dimensions
(diameter) of a sample having been put into its theoretical basis.

The above-presented material has been submitted to the Federal Institute of Industrial Property (FIIP) as a re-
quest for a Russian Federation patent on "A Method of Nondestructive Measurement of the Thermophysical Properties
of Rocks on Borehole Cores" (registration number 2006121332 of 15.06.2006).

NOTATION

a, thermal diffusivity, m2 ⁄ sec; Fo = aτ ⁄ R2, Fourier number; J0(pr), J1(pr), Bessel functions of zero and first
order; p, parameter of Hankel integral transformation T

__
H; Q, thermal capacity of a heater, W; q, heat flux density,

W ⁄ m2; r, cylindrical coordinates, m; r0, radius of a circular heat source, m; R, radius of a body, m; s, parameter of
Laplace integral transformation θ

__
Hs; t, temperature, oC; ten, initial temperature of a body, oC, K; z, Cartesian coordi-

nates, m; ϑ = t − ten, excess temperature, oC; λ, thermal conductivity of a body, W ⁄ (m⋅K); τ, time, sec; ϕ, angle of
inclination of the ϑc → √τ  curve. Subscripts: en, environment; c, center.
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